Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001.

نویسندگان

  • David J Barber
  • Edward R D Scott
چکیده

Crystals of magnetite (Fe(3)O(4)) and periclase (MgO) in Fe-Mg-Ca carbonate in the Martian meteorite Allan Hills 84001 were studied by using transmission electron microscopy to understand their origin and evaluate claims that the magnetites were made by Martian microorganisms. In magnesian carbonate, periclase occurs as aggregates of crystals (grain size approximately equal to 3 nm) that are preferentially oriented with respect to the carbonate lattice. Larger periclase crystals approximately equal to 50 nm in size are commonly associated with voids of similar size. Periclase clearly formed by precipitation from carbonate as a result of partial decomposition and loss of CO(2). Magnetite occurs in more ferroan carbonate, and, like periclase, it is associated with voids and microfractures and the two oxides may be intermixed. Magnetite nanocrystals that are commonly euhedral and entirely embedded in carbonate are topotactically oriented with respect to the carbonate lattice, showing that they formed as solid-state precipitates. Magnetites in Fe-rich carbonate rims are not well oriented. These magnetites are generally more irregular in shape and diverse in size than the euhedral variety. All occurrences of magnetite and periclase are entirely consistent with in situ growth by solid-state diffusion as a result of carbonate decomposition during impact heating. Biogenic sources should not be invoked for any magnetites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 4 °C in a near-surface aqueous environment

Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars’ crust—the...

متن کامل

Combining meteorites and missions to explore Mars.

Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions hav...

متن کامل

Carbonates in the Martian meteorite

Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars’ crust—the...

متن کامل

Thermal Decomposition of an Impure (roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in Alh84001 Carbonate Disks

Background and Introduction: The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. [1] have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2002